

Intermediate Value Theorem (IVT)

			1					_		
		x	-5	1	3	8	14	_		
		f(x)	7	40	21	75	-100			
3.	The table above gives selected values	ies of a o	continuou	is functio	n <i>f</i> . Use	the table	to answe	er the following questions.		
a.	On the interval $-5 \le x \le 1$, must the bevalue <i>r</i> , such that $f(r) = 30$? Explain.	ere b.	On the sthe min	interval - imum nu	$-5 \le x \le 1$ mber of z	4, what zeros?	is c. (1	On the interval $-5 \le x \le 14$, what is the fewest possible times $f(x) = 20$?		
·-	Consider the function $s(x) = 2x^2$ reasoning.	+4x. N	Must there	e be some	e <i>a</i> betwe	en 0 and	1 for wh	ich $s(a) = 3$? Explain your		
5.	5. Let k be the function defined by $k(x) = \begin{cases} x+2, & x \le 1 \\ x^2+4x-2, & x > 1 \end{cases}$. Must there exist some t in the interval (0,3) for which $k(t) = 4$? Explain why or why not.									

Extreme Value Theorem:

If a function f is continuous over the interval [a, b], then f has at least one minimum value and at least one maximum value on [a, b].

A table is shown with selected function values for the twice differentiable function *k*. Read each of the explanations that follow and decide whether the Intermediate Value Theorem or the Extreme Value Theorem applies. Fill in the blanks with **IVT** or **EVT**, as appropriate.

x	1	2	3	4	5	6	7
k(x)	5	2	-4	-1	3	2	0

- **1.** Since *k* is differentiable, it is also continuous. Since k(6) = 2 and k(7) = 0, and since 1 is between 2 and 0, it follows by the that k(c) = 1 for some *c* between 6 and 7.
- There must be a minimum value for k at some r in [1, 7], because k is differentiable and therefore also continuous. Hence the applies.
- 3. There must be some value a in (2, 6) for which f'(a) = 0, because k is continuous and therefore k has an absolute maximum on [0, 6] by the .